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NOMENCLATURE

S unit vector parallel to body surface in plane e = constant,
positive in direction of increasing x

a angle from meridian e = constant to tangent to potential
flow streamline, positive in direction of increasing e

ao constant, Equation (40)

A qe - wrosin a

dA element of area on resultant body, body plus displacement
surface

A A

b c x a, unit vector parallel to body surface in plane
x = constant

bo constant, Equation (40)

B wrosin a

c unit vector normal to body surface, outward from surface

cl constant, Equation (79)

c2 constant, Equation (80)

C 3  c 2 /ci

constant, Equation (83)

C wrocos a

CD drag coefficient based on area 7TrM 2

Cn Magnus yawing moment coefficient (Equation (154))

CN normal force coefficient (Equation (152))

Cp pressure coefficient P-•C

000 - 2

Cy Magnus side force coefficient (Equation (153))

d displacement of origin of x, r, 0 system from origin of
•, h, 8 system (Figure 8)
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unit vector direction of free stream velocity (Figure 8)

6;•2 unit vector normal to 6, and in C, x plane (Figure 8)

6 6, x 2 (Figure 8)

Yy + i FZ, complex Magn's force on portion of body between
crors section • = C and b)dy nose

Fy )m'oner• of Magnus fo:ce F along Y axis (Figure 6)

Fz -3mp'•'rt "'•4 'agnus 'orce F along Z axis (Figure 6)

G i unctic• . n (See Table I)

h zadial distance in plane • = constant (Figure 8)

hr&; 0i distance to point on body in plane • constant
(Figure 6)

unit radial vector in plane • = constt.nt (Figure 8)

i unit vector along body axis (Figure 8)

I radius of starting circle, (Equation (100))

j unit vector normal to i and in x, ý plane (Figure 8)

Ji parameter (See Table III)

k 'constant in friction formula (Equation (95))

K1 , K2  parameters for ellipsoid (Equations (150) and (151))

t exponent (Equation (40))I reference length

, m exponent in friction formula (Equation (95))

M Mach number

" MY Magnus moment about nose of body acting on portion of
body between cross section • = C and the body nose,
positive as shown in Figure 1
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n exponent in velocity profile formula (Equation (52))

n unit vector normal to body plus displacement surface,
outward from surface

N number of base radii behind base beyond which wake
thickness is constant and equal to R4

vector normal to body plus displacement surface, outward
from surface

p spin rate parameter

P static pressure

q velocity at outer edge of boundary layer

Q right hand side of EquaLion (24)

velocity vector (Equation CLT),

r radial distance in plane x = C (Figure 8)

ro radius of body of revolution

r maximum radius of body of revolutionM

r' radial coordinate of section of resultant body in Z' plane
(Figure 7)

unit vector along radial direction in x = constant plane
(Figure 8)

R radial coordinate of resultant body, ro + 6*

ReL reference Reynolds number V•L

V

RW displacement radius of wake (Equation (C-i))

RW* constant displacement radius of wake far behind body
(Equation (C-l))

s distance on bod• surface along potential flow streamline

sx distance along body surface in plane e = constant

So distance along body surface in plane x = constant

s• distance along section of body plus displacement surface
in plane • = constant (Figure 7)
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S vector from origin of ý, h, 8 system of coordinates
(Figure 8)

t thickness ratio, minor axis divided by major axis for
ellipsoid

T temperature

u velocity parallel to surface and in plane e = constant

value of dUe at stagnation point
dsx

uq velocity parallel to surface and in direction of qe

v velocity parallel to surface and in plane x = constant

v velocity parallel to surface and normal to direction of
q q e

Vs velocity along circle in Z plane (Figure 7)

VI velocity along cross section in Z' and z planes (Figure 7)s 0

V velocity normal to circle in Z plane (Figure 7)
n

VW velocity normal to cross section in Z' and zo planesn (Figure 7)

V0  magnitude of free stream velocity

Ve velocity vector along displacement surface (Equation (10))

w velocity normal to body surface

x distance along axis of revolution

xo 0value of x at intersection of axis of revolution and
plane =C

y distance from body surface in direction normal to surface

yq value of y slightly larger than 6

Y coordinate in zoplane (Figure 6)

zo complex plane coinciding with plane ý= constant and
having origin of coordinates on ý axis, zo = Y + i Z
(Figure 6, 7)

Z' complex plane coinciding with plane • constant and
having origin of coordinates on x axis (Figure 7)
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Z complex plane in which section of body plus displacement
surface is a circle as a result of a transformation
(Figure 7)

a angle of attack of body

ýotan- 1 4i 
I

angular coordinate in =constant plane (Figures 6, 7, 8)

unit vector in direction of increasing a (Figures 6, 8)

y angular coordinate in Z' plane (Figure 7)

A ~integration interval 2i7 divided into equal steps of
length A (Equation (144))

boundary layer thickness

boundary layer displacement thickness defined by Equation

(23)

V gradient symbolI

S (a - y) see Equation (128)

y/6

rl starting angle (Equation (100))

6 unit vector normal to r and in direction of increasing
'3 (Figure 8) (6 x

'3 angular coordinate (Figure 2)

K ratio of specific heat at constant pressure to specific
heat at constant volume

X ~ra'Aial coordinate in circle plane (Figure 7)

viscosity

V kinematic viscosity ý/-P

v ~unit vector normal to section of body F~=constant
(Figures 6, 7)

distance in direcCion of free stream velocity (Figures 6, 8)

P density

a angle in Z plane (Figure 7)
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T Tw wall shear stress

T~rx wall shear stress along 8 = constant direction

wall shear stress along x = constant direction

• F angle between surface of body and x axis in plane
8 = constant (Figure 2)

4) three-dimensional perturbation velocity potential
(Equation (105))

0 otwo-dimensional perturbation velocity potential in plane
l d dc

X1 angle defined by Equations (12) and (13)

X2 angle defined by Equations (14) and (15)

tangent of angle measured from direction of potential
flow streamline to direction of surface shear stress,
positive in direction of increasing 6

W angular spin velocity of body_- positive as shown in
(Figure 1)

0defined by r'= roe (Equation (124))

0 •odefined by A =roeso (Equation (125))

Subscripts

b at base of body

e at outer edge of boundary layer

M maximum value

s at stagnation point

w at surface

W wake

£ * on displacement thickness surface

very far ahead of body
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Superscripts

"fluctuating quantity

< > mean value

* value very far behind base

dimensional quantity
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INTRODUCTION

When a spinning body of revolution is flying at an angle of
attack, a force normal to the angle of attack plane acts on the body.
Associated with this side force is a moment. The force and moment
are known as the Magnus force and moment. Although the Magnus force
is usually only a small fraction of the normal force it, and its
moment about the body center of gravity, can have an important effect
on the body trajectory. In order to predict the Magnus force and
moment and in order to better understand experimental results a
theory is needed.

The problem is to calculate the Magnus force and moment given
only the shape of a body of revolution, its speed along the flight
path, its spin rate, its angle of attack, and the properties of the
atmosphere. If the flow were symmetric about the plane formed by
the axis of the body and the free-stream velocity vector there would
be no side force, a force perpendicular to the plane of symmetry.
There would also be no yawing moment. Because, however, the fluid
through which the body is moving is viscous, a boundary layer is
present on the body. The spin of the body combined with the angle
of attack causes the boundary layer to be unsymmetric with respect
to the plane of symmetry, the plane formed by the axis of revolution
and the free-stream velocity vector. The resultant configuration
is shown in Figure 1. Because the symmetry of the flow about the
angle of attack plane is destroyed by the unsymmetric boundary layer
a side force and moment exist. For the symmetry to be destroyed,
both spin and angle of attack must Ze present.

In the present investigation the Magnus force and moment are
calculated for a body with no separation of the boundary layer.
The boundary layer is therefore thin over the entire body and there
are no regions of vorticity shed into the flow ahead of the body
base. To calculate the Magnus force and moment for such a flow the
inviscid flow around the body is found first. Then the boundary
layer displacement thickness surface surrounding the body is cal-
culated by use of boundary layer theory. The displacement thickness
surface is added to the body and the force and moment calculated for
the resultant body in an inviscid flow.

This method for the calculation of the Magnus force and moment
is that of Martin (Reference 1) who presents a theory for the %lagnus
force and moment on a cylinder at a small angle of attack. The

1
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boundary layer is laminar and incompressible. Quantities of higher
order than the second in angle of attack, spin velocity, and distance
from the leading edge and their products with one another are neglect-
ed. Martin finds that the Magnus force is directly proportional to
the product of the angle of attack, spin velocity ratio, body length,
and the displacement thickness at the body base at zero angle of
attack. For turbulent flow Martin replaces a calculated constant
of proportionality by an unknown coefficient.

'Platou (Reference 2) presents experimental data for supersonic
flow and concludes that Martin s incompressible flow theory predicts
the correct order of magnitude for 3 to 5 caliber bodies with laminar
boundary layers. To apply Martin's theory to a bullet shaped body
an arbitrary allowance must be made for the nose portion of non-
constant diameter. The extrapolation of Martin's theory to turbulent
flow correctly predicts the Magnus force to be directly proportional
to the product of angle of attack and spin rate. Platou also finds
that the theory of Kelly and Thacker (Reference 3), which includes
a radial pressure gradient and skin friction effect, does not agree
with Martin's prediction nor does it agree with the experimental
result that the Magnus force depends on the spin to the first power.

Sedney (Ref,.rence 4) calculates the Magnus force and moment on
a slender spinning cone at a small angle of attack in supersonic
flow. The boundary layer flow is laminar. Terms of higher order
than the first in angle of attack, spin velocity, and in the product
of spin velocity and angle of attack are neglected. The method
follows Martin and also, like Martin, Sedney uses slender-body theory
to calculate the force and moment on the body that results when the
boundary layer displacement surface is added to the body of revolution.
No experimental test of the predictions seems to be available.

In the present invest.Lgation a method is leveloped to calculate
the M4agnus force and moment for a body of revolution of general
shape with an unseparated turbulent boundary layer. Although the
boundary layer calculation is for incompressible flow, the calculation
method can be used for Mach numbers up to the transonic range because
Mach number effects on boundary layer flow are usually small for
local Mach numbers less than unity. The boundary layer calculation
is based on the momentum integral method. The force on the body is
calculated by slender-body theory (References 5 and 6). A discussion
is given of the calculation of the force by a more exact method
than slender-body theory, namely, the method of Hess and Smith
(References 7 and 8).

ANAYLSIS

In order to calculate the force and moment on a spinning body
the effective shape of the body in an inviscid flow is needed. The
effective shape is found by calculating the boundary layer displace-
ment surface and adding it to the body of revolution. The displace-
ment surface 6* is the surface, which, added to a body in an inviscid
flow, results in a body with the same streamlines as those outside

2
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the boundary layer in the real viscous flow (Reference 9). Therefore,
because according to boundary layer theory the pressure difference
across the boundary layer is negligible, the pressure on the real
body in the viscous flow is the same as on the body plus 5* in the
inviscid flow.

Displacement Surface

To find the displacement surface, 6*, use is made of the fact
that the streamlines outside the boundary layer are not changed by
replacing the body with the boundary layer over it in the viscous
flow by the body with 6* added to it in an inviscid flow. Conse-
quently the velocity component w on these streamlines is also unchang-
ed. To find w on a streamline near the outer edge of the boundary
layer the continuity equation is used; for a steady flow with the
coordinate system shown in Figure 2 it is

coscv 2 -. (pwr) = 0 (1)

cos• - (pur) + (Pv) + ay

where p, u, and v are time mean values and pw is (pw + <p"w">).
Equation (1) is the same as Equation (19) page 414 Reference 10 when
r is put equal to ro. The coordinate system is fixed in the fluid
and the body rotates around its axis of symmetry. All quantities
are non-dimensional; the velocities are non-dimensionalized by V.,
the lengths by r, the densities by pT., and the pressures and shear
stresses by 2

An integration of (1) with respect to y up to yo, where yq is
slightly greater than the boundary layer thickness, results in

Yq r }q(Pur)dy

(pw) yq cos 3 (pv)dy (2)

0 0

3
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For an inviscid flow over the body with 6* added to it the result for
(pw)yq is

qYq
Yq Yq

=p) .cs _ (3)q

(W)y r -x(Peuer)dy - r (PeVe)dy + (PW) 6 * (3)
Yq r axPee~d

"J6* 9"J

The term (pw) 6* appears because the 6* surface has a slope with
respect to the body and w is normal to the surface without 6*.In Equation (3) p, u, and v have the subscript "e" because the flow
is inviscid and the velocity varies negligibly slowly with y.

Then, because the streamline at v is the same for both the
viscous and the inviscid flow pw is aigo the same. Therefore,
equating (2) and (3) the result is

Yq yq

r-[r(peuePu)]dy - p(e v -pv)dy

o 0

6* 6

(Pur)dy + v (PV)dY + (pw) 6 . =0 (4)

0 0

4
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The relations

f e erd = fr (Peuer)dy + 3 rpeUe

ury xeuer)dY + T-•-Peue

P V p dy = + 26 (6)

e e f 6e P e e 3- a ee

Yq Yq

a r(p u -pu)dy 2- [r(Peue pu)]dy (7)
cfe
o 0

Yq Yq

(• (PVe-PV) dy = (8)
7- ejf'90Peve~v

o 0

are now used in Equation (4). The dist. -ice r is taken as the body
radius r,, consistent with the thin boundary layer assumption. In
the integrals in Equations (5), (6), (7), and (8), Peue and Peve
are equal to their values at yq. This causes an error of 0 (62)
in the integrals, which is negligible with respect to the integrals
themselves which are of 0 (6). Then Equation (4) becomes

5
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Yq Yq
cO -r (Pupu)dy I (P V pv)dy + --cos-(r0 Peue)

r x -o r ee r ax

6* 0

+ - 1--(PeVe) + (pw) 6 * 0 (9)

To find (pw) 6 * use is made of the fact that in the inviscid
flow over the body with 6* added to it the velocity component normal
to the displacement surface 6* is zero. The velocity vector Ve
along the 6* surface is

+b v e+ c w (10)Ve =ae +be ec

where a is a unit vector along the body surface and in the x
direction, B is a unit vector along the body surface in a plane
x = constant, and a is a unit vector normal to the body surface and
outward. The condition for no velocity normal to the displacement
surface is

Ve N= 0 (11)e

where N is a vector normal to the body plus 6* and outward from the
surface. To find N note that 9 is normal to each of the two vectors

cos Xl + 8 sin xI) and (B cos X2 + c sin X2) which lie in the
displacement surface along 0 = c and x = c,respectively. The angles
Xl and X2 are given by

Asx
cosx1  D (12)

6
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D6

a'- Asxsinx = D-1(13)

r AO
oos (14)cs2 =D•

D2S- A o3 (15)
sn2 D 3

where

-s xs2 (16)D1 = s+ ( -Asx x

and

2=2 (L6" 2m
D2  ro 2 AO2 + 2O (17)

Then

N= (a cosx 1 4 : sinxl) x (b cosX2 + c sinX2 ) (18)

7i
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or

N ccosxlcosx2  bcosxlsinx2  _ asinxlcosx2  (19)

Then (11) becomes

Ve' N = W CoSXlCOSX2 VeCOSXlsinX2 - inxlcosX2 0 (20)

or with (12) through (17),

36* _ e ~w6 - + (21)
e -e as r° (2

x 0

or

a6* PeVe a6*
(pw) 6 . = PeUe cos2 W + r e (22)

When (22) is substituted into (9) the result, after rearranging
terms, is

(23)
q Yq

coa{r [L U f (PeUeuU)dy]} + a![peve6*- (p v -pv)dy]=0
x 0  e e e 0 e e e e

0 0

8j
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Equation (23) is the equation for the displacement surface 6* (see
Reference 9). The Equation (23) is a partial differential equation
for 6*. When Equation (23) is expanded the result is

a6 p eu eaD eve
r cos"p U6" P [ro c x Pe e -e

o e eax PeVeT 0 co x Pe e

+ cos¢-0 (PeUepu)dy + rocosoi (Peue-Pu)dy

0 0

6

+ (P v -pv)dy (24)

0

where the upper limit yq in (23) has been replaced by 6 in (24);
6 is the smallest value of y for which simultaneously pu =peue and
PV=PeVe•

Equation (24) is a Lagrange linear partial differential equation.
To obtain a solution the two subsidiary equations

dx _ dO (25)

0oCOSP eUe PeVe

and

dx _ d6* (26)
r COSPe ue Q

9
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are to be integrated; the quantity Q is the right hand side of

Equation (24). Equation (25) is

dO - e (27)
dx r u cosoo e

and is the equation of an inviscid flow streamline over the body. To
integrate (26) requires that the integrals in (24) be known. That is,
the boundary layer velocity distribution and thickness must be known.
When the boundary layer properties are known, Equations (25) and
(26) are integrated together thereby giving 6* along a streamline.

By integrating (25) and (26) along a sufficient number of streamlines
the displacement surface 6* on the body is calculated.

Momentum Integral Equations

For thin boundary layers the equations of motion are (Reference 10
page 14)

ur 0T (28)
ax r+ el PW j 2 r C PV _ cos$•x + (Y

and

pvav +w•v +cos€ Dr pt
pucos07i + --o -r - - -xu-- + - -+- (29)dX r s y r ax ra Dy0 0

and the continuity equation is

cos_ ( 1 a a

ro a u-x + L- 2-(Pv) + 2y(pw) = 0 (la)

10
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To obtain the momentum integral equations the x equation of motion
(28) and the 0 equation of motion (29) are integrated with respect
to y in the usual way with the help of the equation of continuity.
The result for the x equation is

(30)
roCos pU(Ue-ady + sin pu(u -u)dy + rocoso- (PeUe-PU)dy

0 0 0

+ ,,Pv(ue-U)dy + PV)dy - sin pv2)dy rx
= r

0 0 o

For the 0 equation the result is

a 6 av 6

•'• pVVe-V~y + •-• ( DveVdy rOS p(-Vy

0 0

=T w r (31)

These equations are the same as on page 416 of Reference 10 in
different notation. In order to use the momentum Equations (30)
and (31) to calculate the terms f6 (peue-ou)dy and of6 (Pv-pv)dy

in Equation (24) for the displacement surface 6* an expression for
the velocity profile through the boundary layer is needed.

11
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Velocity Profile

The velocity profile of the velocity component in the direction
of the outer streamline is assumed to be

u-u
q w= f () (32)q- u

q,w

where t=y/6, and the velocity profile for the velocity component
perpendicular to the outer streamline is assumed to be

V q-
-v'w = Pg (W) f(O) (33)

e uq,w

In (32) and (33) eis the speed along the streamline at the outer
edge of the boundary layer; Uq is the speed in the direction of
the outer streamline and v is the speed in the direction perpendic-
ular to the outer streamlide. The quantity p is an as yet unde-
termined parameter. At the surface (see Figure 3)

t = wrosina, (34)

and

V , wr cosa, (35)q 0

where a is the angle between the outer streamline and a line e=c.
Also, from (32) f(o)=0 and f(l)=l. At ý=l, v =0 by definition.
Therefore from (33) and f(l)=l it follows thav

-v
q,2wg(qUlw (36)

12
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Also, division of (33) by (32) results in

2 21w (37)

q q'W

As Y-*o (37) becomes

v q v q,,w 
(38)g(o)

u u
q qw

Y-*O

The quantity g(o) is put equal to unity. Then (38) becomes

ýV
3V TY-9-cz _a = 0 (39)

Y-+O ýU q Y-+O aua
3y

3v

ýw 
q

The quantity equals the shear on tha surface in a direction
w

normal to the outer streamline; a positive value means the shear acts
D TTq

in the direction of increasing 6. The quantity 'Pw(-) is equal to

the shear acting on the surface in the direction of the outer stream-
line flow. Consequently ý is the tangent of the angle measured from
the direction of the outer streamline to the direction of the surface
shear stress; ý is positive in the direction of increasing 6.

The function g(ý) is taken to be

g(O (1-ý) + a 0 + b 0 (40)

13
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The condition g(o)=l, previously imposed, gives ao=0.. From the
expression (36) for g(1) and from (40), the result is

vbo q'Wb= - •[eU~]"
e q,w

Therefore (40) becomes

(41)Sg(O) (1-0£ Vq,wýE qe-u q,w] 11

The exponent k is found by considering conditions at the stagnation
point of a rotating body at an angle of attack; thus the stagnation
point is not on the axis of rotation. At the stagnation point the
outer stream velocity is zero and the surface has a rotational
velocity wro. Let

v =wr F()(42)

where F(o)=l and F(1)=O, that is, the fluid has velocity wro at the
surface and zero velocity outside the boundary, layer. Also, u, the
velocity in the direction of sx is zero at the stagnation point.
The relations between the velocity components uq and vq and the
velocity components u and v are

uq = ucosa + vsina (43)

and

vq usina + vcosa (44)

14
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At the stagnation point (43) and (44) becomes, with (42),

U = wr0 F sina (45)

and

Vq wr° F cosa (46)

Equations (45), (34), (32) and qe=0 result in

F = 1-f (47)

From (34), (35), qe=0, (46) and (47) are used in (33) the result is

cota = ', g (48)

From (39), (45) and (46) it follows that

cota = ( (49)

Therefore from (48) it follows that g=l for all C at the stagnation
point. Now consider Equation (41). At the stagnation point qe=0,
'=cot a, and relations (45) and (46) with F(o)=l hold.

Equation (41) then becomes

g(r,) = (1-2) + 4 (50)

15
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Therefore to have g%')-i at the stagnation point, put £=1.
Then (41) becomes

g = i-{ + } (51)
qe-U q,w]

The velocity profile (32) is taken to be a power profile byputting

f() = n (52)

Because the velocities tnat appear in the two momentum integral
Equations (30) and (31) contain u and v it is necessary to express
u and v in terms of the velocities uq and Vq that appear in (32)
and (33). The relations are

u = u cosa-v sina (53)q q

and

v = u sina + v cosa (54)
q q

When u and vq are found from (32) and (33) and (34), (35), (51),
and (51) are used, Equations (53) and (54) become

(A n+B)cosa [A n-n+) + C(l- n+l sina (55)

16
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and

v = (A~n+B)sina + [A (,n_,n+l) + C(l-n+l)] cosa (56)

where

A q= q- wrosina (57)

B=U = wrsina (58)
q,w 0

C Vq,,w =wr 0cosa (59)

Differential Equations for 6 and
Expressions (55) and (56) are put into the integral momentum

Equations (30) and (31) and the integrals evaluated. The density is
taken constant from here on in the boundary layer analysis. A
sample term is 6 (ue-u)dy which is written as 6 (Ue-u)dt

The result is

1 n~iTsn l 1

(Ue-u)dl = A n osa AniSina + (Ap+C)n--•sina

o

or

1(U_•1d•=AG 7 cosa + ,PAG 2sina + CG4sina

0

o1

17
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where

G- 1G2 (n+l) (n+2)

n+l
4 =n+2

•n

G7 -+l

There are fourteen G's; they are listed in Table 1.

In Table II are listed the integrals that occur in Equations (30)
and (31). The procedure results in two partial differential equations
with 6 and i as dependent variables and x and 6 as independent vari-
ables. The x equation, the result of (30) and (55) and (56) is

rcoCS4 fi[ 2 Jl+*J2 +J 3 1 + roCOs ax 6[2,J 1+J 2I

+ 21 J 6+[J 7 +J 8 ] + 6[2- J +J

r T2J1 'J2 +J3,
w W ax a- x 10o

(60)

ar au
+[2Ji J+ýJ2 +J3 ]0 cosO + r cOS e[ýJ4+J

2 j6 7 8 e au
+[p~+ -- W ~TO + -ý-O["18 19]

2 ar

J 9 +pJ 1 0+J 1 1 ].x--os•}

18
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The 0 equation, the result of (31) and (55) and (56) is

36 2 _xrocoS [ J6+J14+J!5] + rCOS. [2aJ 6 +J 1 4 ]

+ 2J +J + 2 612J 9+J 1 2 ] (61)

6{[02 xJ6 x;)J14 J15 23r

Sr)- [,a + ---I]rocoso + [12 J4•J1+J I os

"+ [q, j 4+J 5 Irocoso + N 2 3J9 + J12 +J13ax 45 + e

av ar
"+ [qJ 1 8 +J 1 91 + [*2J 6 +pJ 1 6 +J1 7 cx--1c°

The J's are listed in Table III. They are independent of 6 and
and are calculated from the inviscid flow velocity distribution over
the body, spin rate, and the distribution ro(x).

The simultaneous solution of (60) and (61) gives - •-,

and a- at a point x,0. An iteration process is used. First (60)

a6 6and (61) are solved for (-) d (L) with - 0 and L =U Then

the values of and (-) are substituted into (60) and (61), and
1x ax

(60) and (61) are solved for a-nd) -O) Then (P) and (L)ao 1 Do 1 1
are substituted into (60) and (61), and (60) and (61) are solved for

and )(and These values of 4) and (EL) are substituted into
2 a xX2 2 3x 2

a6 -(60) and (61), and (60) and (61) solved for (T-7) and (These

2 2
values are then used to find (--) and (±O) which are used to find" 3 3'
(6_-) and (34) and so on until further iteration produces a neglig-

ible change in ( , (4-), (-) and (,). In the calculations the
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iteration is stopped either after 25 iterations or when x+Ax

and -1) are both less than .001. The subscript i is the
x+AX

iteration number; 6 x+Ax and 0x+Ax are the values of 6 and 0 at the

next point along a streamline. They are found from

A6 = ( + (i6 Ax 62

and

A* = ( + (Ž-) + Ax (63)

where dO is obtained from Equation (27), the equation for a streamline.

Initial Conditions for 6 and i
In order to begin the integration of (60) and (61), the values

of 6 and i at the stagnation point are needed. Up to now a method
for calculating 6 at the stagnation point of a spinning body when
the stagnation point is not on the axis of rotation has not been found.
Consequently, the needed value of 6 is obtained by extrapolation from
the value of 6 at the stagnation point on a spinning body at zero
angle of attack and the value of 6 at the stagnation point of a non-
spinning body at an angle of attack. Thus, it is assumed that 6 at
the stagnation point when spin and angle of attack are both present
can be written as

+ p + (64)

a00 r,)) (oo 0,0
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or with

(p (o,p-60,0o
o'o P

and

0,0= ( tohI0
O'O

Equation (64) becomes

=6 + 6 -6 (65)alp olp a,,o Ooo

For a = 0 the inviscid flow streamlines lie along e = constant

and the entire flow is independent of 0. Therefore to find 6
and 6 there is used, a = 0, ve and (61).

As the stagnation point is approached A-qe.*ue, Bo, and c•wro.

There is obtained, not putting ue o, ro = o yet,

= 0 J =ue G

5 e7

J 2 =0 J 6 =0
(66)

J u2 GG~u2G
J3 Ue G7G8 J7 = e G14

J4 =0 J8 =-u ewr oG0

2
J9 =u e GII J15 =-ue wroG9

J1 0 =2u ewroG5  J 1 6 u-Ue2G1 3
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Jll = 2 ro 2 G6  J 1 7  -UroG 9

J1 2 =- 2 UewroG5  J 1 8 =-UG2  (66)

6 2
J 13 r 2o2G 6 J 19 =-wro0G 4

2
=u G

14

Because a = 0 for all x it can be shown that

aJl 'J6- 0 --- 0
ýx ax

-2 2014 - eu 1 (67)3x ax 0a 1G3

J3 = u au GG15 0
ýx ýx 87 x

When these values are substituted into (60) and the resulting equation
is divided through by roue 2 the result is

ý6G G w D786 1 e
G os W2 6 {ul cosq (2G 7 G8 +G7 )

ue ee

G7G8 ro 0 11 ro cos + 21kw G o Cos, (68)r ax C r ax u 5 ax
0 0 e

2
2  G6  0 cos#}

ue
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At a 0 the relations u u' r, and r= s hold. AlsoAte es oo x

CoS s . The friction coefficient is written as
x

(-p-a- W (69)
-e P 2 Vu6L u r 6 ReLe e ~ e e~so0

When these relations are substituted into (68), the result is

au/u
e

~S7G8  ____ [ __ 2

as usro6  ReL e's [3G 7G 8+G 7Ip G 11

(70)

+ 3ýLw G5 2 G6

es es

The quantity 6G7 G8 is equal to the ratio of the momentum thickness to

the boundary layer thickness 6, fo •n(l-n)dý. At the stagnation
0

36G7 G8point rO 0. Consequently to avoid an infinite value of
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which is physically unrealistic, it is necessary that the term
inside the braces on the right hand side of (70) be zero; that is,

au/ue
ac w - (3G 7 G8 +G7 ) + t - 2ý - G5  + T 0

,2 - 7 8 (71)
u e,s eL Ue,s e,s

When the relations (66) and (67) are used in (61) and the same
procedure used that was used to obtain (71) the result is

av/ue
S9= 0 (72)

6 2U , / sReL Ue, s '

av/u e
The ratio (-)w can be replaced by an expression involving

au/ue
) by using (56) with "a" = 0. That is
w

v U Ue(,nn+l) + wr (i-n+l)

Then

vue n-i nn
_ /ue = •[nj n -l-(n+l) n _ - r (n+l) n (74)
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Also, from (55)

au/Ue = n-i (75)

Therefore from (74) and (75)

av/ue au/ue (76
w)

Then, with (76), Equation (72) becomes

au/ue

Re + 4G 1 3 + -4 G 06 2 U/ ReL1 u #

e,s L e,s

-4w
= 3u/ue 9 (77)

•s - uu/uee1 + 4G1 3w 6-2 -)w U e 25
etsL
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when ' from (77) is substituted into (71) the result can be written
as

___ u/ew -(3G 7 G8 +G7 )
6 R a sRe

e,s

+ 2{ U16G1 G9 2

e,s 2 1 2+G3

+ Hu/ 1 +4 G] + G 6 =0 (78)
(6u/ ReR

ee~s L

+ au/eei

Equation (78) is solved for ( e) 62 by iteration.Whena vaue s taen fr ( • w u•,sReLbyieaon

When a value is taken for ( e) 6 is known. In the present

investigation U/Ue ) is taken as unity which is consistent with
Dý w

laminar flow at the stagnation point and a "power" profile. When
au/ue 1

( - -W¢ 62U 'Re is known, a substitution into (77) gives P.
e,s eL

Thus 6s and 4s can be found for a = 0, both for spin and no spin.

The value of 6s for a ý 0, w = 0 is found by similar procedure.
For w = 0, the parameters B and C are zero and A = qe. Near the
stagnation point the flow outside the boundary layer can be expressed
as (p. 462 Reference 10)

ue = ClSx (79)

ve = c 2 se (80)
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where sx and se are distances measured from the stagnation point
along e = constant and x constant, respectively. The equation for
a streamline is

• ds 8 Ve-% U: -(81)
dsx ue

or with (79) and (80),

Sds s
"ds6 =c (82)

Sx

where c 3 = c2/cl. Equation (82) results in

!. c3

s 4 s 3  (83)s0 4 c

or

ds _c 3Sd0 c 3 -s (84)

x

At a stagnation point that is off the axis of revolution of an
elongated body of revolution, the radius of curvature of the surface
in a plane 0 = constant is greater than the radius of curvature in a
plane x = c. Consequently c2>cl and so c3>1. Therefore all the

ds
streamlines except the one for c4 = - have dsx - 0 at the stagnation

dsx

point (see Figure 4). Thus for all the streamlines except the one
for c4 = •, the angle a is zero at the stagnation point. The
stagnation point is a nodal point of attachment (p 76 Reference 10).
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The values for the J's at the stagnation point are obtained by
putting w = 0 in (66). Moreover, going to the stagnation point but
not putting ue = 0 yet, it can be shown that

a-)=0 6  2 3a

e Ue -11  0

ai au
'J2 aa eJ7 e4
ax e aax e
a 3 2u au2GG3 - 2Ud G 14

ax eax 8 7 ao e 1I2a-

(85)

aJ 6  2 aa aJ9 aue

ax =-Ue Glla ae = 2e G 11

aJ14eu ae12  2 aa

ax eax 13 ae e (2G 1 3-S 2) -ýe

2 a13xJl = e(2G9- G8 18 0

These relations together with

w0 =•x

are used (61) and the resulting equation divided through by ue 2 .
The result is
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-r 0 cos•'-G1 3 p-r 0 Cos0Ax6G G 2 +2 D-6Gax 13 aP G11  )ae 11j

Tw u r°

2au r0  2 3aa.r_- 2 ax- 1 3 ProS•+2•S3x-cosp + [ 7x ea G, 
(6 H

o' 2 3 0 64 [3j•--os G l••rC (86)
u e e 3a

ee
2G eG )2rcs+-t1G r coý 2 8•I,(2GI3G2)-je

e e

G2 av

u aee

Now use

Su/u
= (e)Tw a--c w

2 Re . u (See Equation (69)) (87)
e eL

Also, on the line 0 =

3a

-= 0 (Appendix A) (88)

29
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and at the stagnation point

ee

Bec eae 2 ns (Appendix A) (89)
aav se sI

alu ;veee
Because neither - nor (T-)s is zero (Appendix A) the

aa ae2 'S ae
term (--)s is neither zero nor infinite. When (87), (88), (89),

and 1 Ve - 0 (Appendix A) are used, the right hand side of (86)
Ile 3 x

becomes

)ý au ar0  au
6[ 2U U er 0ue

L w + G rcoso + 2Gl 3  °s0 - ?l TE-xGI0Re Su u ax 13 0 137o 1eL e e

G o
+ (2GI 3 -G 2 a) + ] 190)

To prevent (90) from becoming infinite as ue approaches zero at the
stagnation point it is necessary that p = 0 at the stagnation point.
Therefore the value of P at a stagnation point for a 3 0, w = 0
is zero.

When * = 0 and (66) with w = 0 and (85) are used in (60) the
result is

coso G G2. 2 r au e
roeG G +- 6ue2 G rT 5 (2ue- rcoCO G7G0 xu 78 36 e 14= oW e ax 0s 7G8

2 ar au a(91)
+u G C OSO + rcospu e-- 2 aue 7U 8cs ax--x r0  e-a S7 +Ue 1 2 ;)
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Equation (91) is divided through by Ue2 . The term T becomes
x U 2

ei au/ue
which is written as 1 e The relation ue = U Sx

ue6ReL ( w.es

where sx is measured from the stagnation point is also used, as is
the relation GI 2  G7 G8 . Then (91) becomes

12

3a_ 1 r0  au/ue rro G x 12a 6G1 -61-[2O(2G7G8+G7
x 1u sx6Re x

e,s x LX

+ G7 G8 (a 2 + aa (92)
x

In order to prevent the right hand side of (92) from becoming infinite
as sx becomes zero it is necessary that

1 u/ue3
e1 L - -- 6(2G7 Gs+G7 ) 0 (93)

U e, s R L , :

or

au/u 2
S! (94)

S = ReL (2G7 G8 +G7 )

Thus, for a • 0, w = 0 the value of 6 at the stagnation point is
given by (94). The starting value of 6 can now be obtained from
(65), (78), and (94).

For a = 0 the starting value of ý is gotten from (77). For
a 0, w) 0 the starting value of ' is zero. For a $0, w y 0 the
value of P at the stagnation point is obtained by use of (39). Thus
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for all streamlines except the one for c 4 = (See (83) and Figure 4)
Vq lies in the plane x = constant through the stagnation point because

a = 0 there. Therefore at the surface Vq = wro and (!y)< 0 (see (46),

(47)). Also uq = 0 for all y at the stagnation point; therefore
-a 0 for all y. Thus it follows from (39) that P = - for all

streamlines at the stagnation point except the one for c4 = •. For
c4 = •, a = w/2 and similar reasoning results in ' = 0. Thus P is
double valued at the stagnation point. The integrations are made for
c4 = • so that ' = - • is the starting value.

Friction Coefficient
The component of the friction coefficient in the direction of

qe, the velocity at the outer edge of the boundary layer, is
approximated by a formula based on 6 and on the magnitude of the
component in the direction of qe of the relative velocity of qe with
respect to the surface. The formula is

rw
qe k

S[ e 12 e_ ,w ] (95)

or

Tw 2-mqe Tk _JAI

Sm m (96)pV,,2 q Rem
e L

Equation (96) is consistent with the expression (32) for the velocity
profile in the direction of qe. The component Twx along a meridian
is given by (see Figure 5)

= (cos a - Osin a) (97)
w wx qe
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and the component; in a plane x = constant by

TW = T (sin a + cos a) (98)

Integration of Equation for Displacement Surface
The quantity, Q, in Equation (26) is the right hand side of

Equation (24). The integrals f06 (u-u)dy and f0(ve-v)dy are

given in Table II. The Equation (26) becomes

d6* Q
dx rocosou

0 eJ

or

a u Dr a
cosd6 = 6(co__ e + co sA 0o edx u ax r ox 1:U e8)

e 0 o e

6 aJ4 +• 3J5) l E+ý
cosO (_._+ + +2 cos w + r

+ ax J47-x +-x-- u -x r (ax J 4 + J 5 )
e e 0

6(J J 1 96

+r- (J1 + + -- + roue (J18 + J) (99)
roue 1836 @6 M6 ru 36 18 19

The quantities 6, *, and their derivatives are obtained by use of
(60), (61), (62) and (63). The derivatives of the J's are obtained

by calculating the J's at x+Ax and O+A'1 and using 2J- AJ! and

.r x 3dx
r • Z- The velocity derivatives and -- are obtained from the

velocity distribution and shape of the body. The initial value of
6s

6* is taken as - which is valid for a power profile with n=l, the
2
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approximation to a laminar profile at the stagnation point. In (99),

the derivative !L* is along a streamline. Thus (27), (60), (61),
dx

and (99) are integrated simultaneously step-by-step. The result is 6,

ý, 6*, and the streamline path O(x). Different streamlines are ob-

tained by beginning the integrations at points on a circle of small

radius in the tangent plane at the stagnation point. Through each
point on the circle goes only one streamline; the entire streamline
is thus fixed by choosing the point on the tangent circle. The
relation for the initial value'of 0 in the integration is

I+ n - sin n (100)r

and the relation for the initial value of x is

x = x s + Ax = x s + I cosý Cos n (101)

The angle n is zero along the meridian O=n in the direction of
positive x. The distance I is the radius of the startir.- circle.

Derivation of Equations for Magnus Force and Moment
AfEer the d spiacement surface thickness 6* h been computed

it is added to the body. To calculate the force and moment on the
resulting body, slender-body theory (References 5 and 6) can be used.
In slender-body theory the force acting on the portion of the body
between the nose and a section (C-C) perpendicular to the axis
(Figure 6) is given by

-2i odz (page 50, Reference 6) (102)
2 0VOO - c

P-2 L
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Here (D is the perturbation potential in the zo plane and is a
solution of Laplace's equation.

Equation (102) can be placed in a form more convenient for use
in the present analysis by integrating by parts. Then (102) becomes

F -2i [z_ WD -Q- ds] (103)
[Z) 2ds

-2 c

where ADo is the change in 4o in going around the section of the body,
starting the ending at the point ZI. Because ADo is zero, (See
9.3.15 of Reference 5), Equation (103) becomes

Ff-= 2i z V ds (104)S 22 0 s
P. .0~ -2-- L c
2L

In order to use (104), VA must be known along the contour c.

To find VA along c the velocity vector 6 is written as

V. e+2 ± + ^ (105)

where P is the perturbation potential, 61 is a unit vector along the
Saxis which is along 1m, and the unit vector 0 is normal to the body
cross section in a plane ý=c (Figure 6). The unit normal fi to the
surface of the body is

^. Vm
n = T-T (106)
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where T (4, h, 8) = c is the equation of the body plus the displace-
ment surface. Because there is no flow through the surface of the
body

n= 0 (1.07)

which, with (105) and (106), becomes

(=+Tý)e VT + 'VT 0 (108)

To obtain an expression for 9 (Figure 6), the unit vector along s
is written as

dh dh-p.• + • ds (109)
ds od-s(19

Then

^dh^ d
v e xs +-h h (110)1 ds ods (11)

The gradient VT is written as

VT = •IT + hT +
1 h h
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Then (108) becomes

+T d T dh
+T+ ( h os h d0 (112)
T r hod h30 - ds

According to slender-body theory the body has a small slope in a

plane a=c, therefore T <<. AlzI the disturbance velocity . is

small. Therefore the product • T in (112) is neglected with the

result that

T dT •113)
V d T_ dho

Thho ho dso

But

i dho 2
ds = + r h0d= h 8•-- hod8 (•=c) (114)

Also

T(ý,h,) = h - h o( ) = c
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Then

9ho0
T=

and

T (Iho)

and

Th= 1

Then (113) becomes

ah
(-o ( 1115)

14 aho 2"1+-1 (_-•)h

where P in (113) has been replaced by (Do. According to the approxi-
mations of slender-body theory, it is permissible to replace the
three-dimensional disturbance potential D in (113) by (D, the two-
dimensional disturbance potential that is a solution of Laplace's
equation in a plane E=c.

When the displacement surface hc.s been added to the body,
a¢(o

Equation (115) is used to obtain -- which equals Vn the non-dimen-

sional velocity normal to a section ý=c. The expressions for
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(ho )01 hot and (ho) are derived in Appendix B. Equation (115)

gives the non-dimensional velocity normal to a body section ý=c. In

te cand the quantity t occurs (see B-21

and B-22). The boundary layer calculations provide S* and other
quantities as functions of x. Consequently ý is found from a specifi-
ed value of x. The value of ý for a fixed value of x, however,
depends on e (See B-39). Consequently when x is fixed the value of

Svaries slightly with 0. The normal velocity - therefore is ob-

tained on a curve that does not lie exactly in a plane ý=c. By
putting R=ro+6* in (B-39) and noting that S*, sin a, and r are all
small of o(a), it follows that the products ro sin a and 6ý sin a are
of the o(W2 ). Therefore, the departure from the plane

ýc = (d+xo)cos a

of the curve on which - is calculated is of o(O 2 ), a small quantity
when a is small.

If the value of • were fixed at the value given by

ýc = (d+xo)cos a

the values of x such that ý=ýc could be found by putting
=ýc=(df-xo)COS a in (B-39) and solving for x to obtain

x = xo-R(x,O)cosetana (116)

The values of " and - for x(6) would then be found by interpola-ýx

tion from the compuhed values of a*and at two values of x, one

larger and one smaller than the largest and smallest value of x
given by (116). This procedure was not carried out in the example
calculation for the half-ellipsoid because the additional complication
it would have introduced into the calculations was judged not to be

justifiable. In the calculation of (!h) (3_h_) etc. (Appendix B),
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the exact expressions involve hardly any more computation than expres-
sions that would be obtained by neglecting terms of o(O 2 ). Consequen-
tly the exact expressions were used.

The next step in the process of finding VA for use in (104) is
to move the origin of coordinates in a plane ý=c back to the axis
of revolution , that is, to the x axis (see Figure 7). The equations
for doing this are

r h2 + 2h (l+x)sin a cos + (d+x) 2sin2 (117)
Q

and

-h sin 8

cos y= -h/ (118)
r

At this stage in the calculation the vertical velocity V4 along
the distorted circle with its center on the x axis and lying in a

= constant plane is known. To find Vs from V5 conformal transfor-
mation theory as applied in Reference 11, 12 ana 13 is used. The
method of Reference 11 and 12 is used to transform the distorted
circle in the r', y plane into a circle in the X, o plane (Figure 7).
Because

/Vn ýv Av (119)

and

34o • o(2V (120)Vn ::•- AX--

and because the potential D at corresponding points in the Z' and
Z planes (Figure 7) is unchanged by a conformal transformation of
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the Z' plane into the Z plane (p 163 of Reference 14), it follows
from (119) and (120) that

V n An. AX (121)

VAn

But Av = jdZ'j and AX = IdZl, therefore (121) is

V n dZ
_n = (122)

-IU-
Vn

The ratio for points on the cross sections in the Z and Z'

planes is given by (Equation (37) of Reference 12), namely

idZ O • i_

dZ1  = e 0o + de- (123)
dy

"wnere for points on the cross sections in the Z' and Z planes,

Z =re r re (124)

and

Z=Ae ~ r oe+i0 (125)

0
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and

s = a - Y (126)

The constant Ro is calculated by

(Page 3 of Refer-
ence 11 and
Equation C of
Reference 12)

2w
o 27r (y)dy (127)

0

The quantity c is calculated from
(Equation 13

Reference 12)
2Tr

1 -
"(a") = -. ( cot 2--d2o (128)

2ra) 212d

Because 6* is a small fraction of ro, the cress secLion in the plane
S= c is almost a circle. Therefore the quantity a in (128) can be
replaced by y (see Reference .1) so that the equation used to
calculate E is

2wr

QW -R' cot IZ--y(129)2r2

For more distorted cross sections iteration is used (see Reference 12).

Once Vn is known on the circle in the X, a plane, the velocity
Vs can be calculated from an equation given on page 5 of Reference 13;
the equation is
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2Tr

a00
~(a) ( 1 / Vn0)

~V )- - V(a) (ot130)S~~~s -2- no o 10
* O

'Jo

When Vs(a) is known from (130), Vs (r',y) is found from

V (r/(,y) = V )(131)Vs s (131

where JdZ I is the reciprocal of IdZ'l given by (123). Then because
V dZ' dZ

VA (r',y) = Vj(ho,O) at corresponding points, the integral in (104)
can be evaluated.

Actually it is more convenient to express the integral in (104)
in terms of quantities in the (X,o) plane. From (131)

V / (r/,y) = V (a) ds (132)
"Vs s S

But Vs(ho,a) = Vs (r',Y) and dsý = dsk because the zo and Z' planes
are identical except for a shift in origin (see Figure 7). Therefore
by using (132) the term VA dsý in (104) can be written as

Vs1 ds = V (O)ds (133)

Also, from Figures 7 and 8

/

zO= Z - (d+x)sin a (134)
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or with (124)

zo= roe 6+i - (d+x)sin a (135)

Then (104) becomes

F 2 r [r 2i (d+x)sina]V ds (136)

-C

From (133)

V ds =V ds
S S

But

I V ds A = o= 0 (.ee Equation (103))

c

Therefore (136) is

F f~=2i r e (cosy + i siny) Vsds (137)

2 Lc
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/

or with roe = r (y) andds Ado

, 2A r Vscosy da (138)

-- L c2

and

2w

Y -2A r Vs d (139)
-L 02

where/
r e= e and e- S1e (140)r r

e a

and 2 and y are known functions of a because Q=S2(y) and y=a-c.

The force Fy is the Magnus force for the section of the body
between the nose and the section x. The force Fz lies in the plane
through the free stream velocity vector and the axis of revolution
of the body.
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The Magnus moment about the nose of the body is given by the
expression, with f taken as the body length,

__ _ o. d (- . _.x 
( 1 1

fd+x) d 112-3 dx
-d

y
where is given by (139). By integration by parts

V2E2

Equation (141) can be placed in the more convenient form

0S//

20 2( d. (142)

x=0 x-

Once the boundary layer displacement surface surrounding the
body has been calculated, the Magnus force and moment can be
calculated by a basically more exact method than slender-body theory,
namely potential flow theory as applied in Reference 7. Although
this method was not used in the present investigation because of a
lack of funds, its use is discussed in Appendix C.

CALCULATION METHOD APPLIED TO INEneSS RATIO 5 HALF-ELLIPSOID
To begin the numerical integration the value of I in (100) and

(101) is taken as 10-5 for all n except ±950. For n=± 9 5 0 I is taken
as 10-3 in order to increase the spacing between the n=_±900 and
n=± 9 5 ° streamlines (Figure 9).

The increments in e and 6* are calculated from (27) and (99)
by use of the relations

46



NOLTR 72-80

AG d8

Ae = (!L) Ax
(d)x

and

A6* d6*Ax

The values of M6 and Ap are obtained from (62) and (63). The
value of Ax used to calculate AO,A6*,A6 and Aý is determined by the
rate of change of between two succeeding values of x. The
criterion is: dx

(dO/d) x-A
(a) if .0002 < Ii- dO j <.002 , then

Ax is left unchanged
dd

(b) if Ii- dO < .0002 , then Ax is doubled for the

next integration step

dO
(c) if .i- d0 I > .002 , then Ax is halved for the

de

dx x

next integration step
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In no case is Ax allowed to exceed 10-4.

To calculate the derivatives of the J's (Equation 60, 61) AO andAx are both taken as 10-4 and the derivatives are calculated by

i Ji, (x+Ax)-J'i2x
x LAx

=-i Ji,(e+Ae)-Jie
a e A0

When Equations (27), (60), (61) and (99) were integrated, it
was found that rapidly diverging oscillations occurred at the start.
This caused the computer to stop. Rather than spend time trying to
eliminate the divergence, the values of 6, i, and 6* were fixed at
their stagnation point values until x became larger than -. 998. They
were then allowed to vary and no oscillations occurred. The stag-
nation point is at -. 999910 so that 6, i, and 6* were fixed for the
first .001910 in x. For the largest value of n, namely ±950, a
calculation shows that the distance along the streamline is about
.0057 compared with .00191 along x. Thus for the streamlines calcu-
lated (Figure 9), 6, p, and 6* are fixed for distances along stream-
lines not greater than .0057 from the stagnation point. Consequently
the results for 6*, and so for the Magnus force on the portion of the
body near the nose, may be inaccurate. Effects of changes in 6, ,
and 6* near the stagnation point decrease rapidly with increase in x.
Thus, a change in 6 at the stagnation point by a factor of 5 for
n=95' makes only a change of 3 in the fourth significant figure in
6* for x = -. 600.

To evaluate the integral in (129) and (130) the method of
Reference 11 is followed. Equation (129) is integrated by first
noting that the integrand becomes infinite at y' = y. Consequently
(129) is written as

C (Y 2T 2 (y) cot 2 + 27r, +

248
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SY -no Y2t

+ f (Y)cotIZ -dy+ Q(y)cot 9-t• 1y (143)
no+° 1 Y t+no

Then near y=y', 2(y) is written as

da

and substituted into

~~Y -no ; (

El (y) cotl:2 -y+ Ql (y) cot!Z-)L-d

o0 1 1 0

thereby giving 4A U-(y), where y-y 1 = A=y 2 -y.

Then equation (143) becomes

/ /

Lf QY)cotL--dy + (Y)cotLL-d-Y

2n 2 2

+ 4A (y) (144)
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The integrals 2 2(y)cot!--dy and :2(y)cot -y are evaluated

0 y+A

by dividing the interval of integration into equal lengths equal
to A and taking 0 equal to the average of its values at the
beginning and end of each interval of length A.

Then

(k+l) A Ck+l) A-Y'( /Sin 2
O(y)cot2 dy = kl inJ2 k+l sikA-yfSink_

2

where Qk+1 = [(k+l) A] + [ (kA)] (145)

By using (145) in (144) the expression for s(y') becomes

F4 n-i1
n- Sin (k-n) A

(n) 1 4Ad- (n) + 9kln i- 2
2n= dy k Sin(k-l-n)A

Lt) k=1 2

N in

iSin (k-n) A

+ k A (146)
z Sin (k-l-n)f
k=n+2
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where For n=0, instead of (146) the result is

where ---- 1

Sn2
e(o) = - A 4djdy + Q in (k-l)A (147)

k=2 2

Also E(N)=EZ(o). In the calculations, N was taken as 180. A test
with N=360 showed a noticeable but negligible change in e(y).

To evaluate the integrals in (138) and (139) the trapezoidal
rule was used with the interval 2w divided into 180 equal parts.

The program for the numerical calculations for use on the
CDC 6400 is given in Table IV.

RESULTS FOR FINENESS RATIO 5 HALF-ELLIPSOID
As an example, the Magnus force and moment on a fineness ratio

5 half-ellipsoid spinning at p=.25 and at a=4* is calculated. The
boundary layer is turbulent and is characterized by n=1/5. The
Reynolds number based on the length of the half-ellipsoid is
4.8x10 6 .

The inviszid flow velocity distribution over the half-ellipsoid
is assumed to be the same as over the forward half of a complete
ellipsoid. Because of the wake this assumption is not exact,
especially near the base, but is used in order to obtain an analytic
expression for the velocity distribution in the example calculation
which is of an exploratory nature. The velocity distrj-i.tion is
obtained from Chapter V of Reference 15. The paramete (Figure 8)
equals unity here. The result is

2 2
1-x 1

U K Cos a tl. cos .sin a (148)
e [ 2 2 1 2
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and

ve =-K sine sin a (149)
e 2

where

3/2

= 2(1-t) 1 (150)

2ii7 -t ln-

and

23/2

K 2 4 (151)
l-t2 (-2t 2 ) + t2ln

2 _2

The half-ellipsoid for which the calculations are made has t=.l so
that Kl=1.02070 and K2=1.96023. The shape of the half-ellipsoid is
given by

ro = t

Calculated streamlines on the half-ellipsoid are shown in
Figure 9 for positive values of n. Each streamline shown in Figure 9
has a corresponding streamline which is its reflection in the line
6=i and which has a negative value of n.

The boundary layer displacement thickness 6* along the stream-
lines shown in Figure 9 (n>o) are presented for n>o in Figure 10a
and for n<o in Figure 10b.
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In Figure lla and llb is given the distribution of the full
boundary layer thickness 6 along various streamlines.

In Figure 12a and 12b is shown the variation of 6* with e at
x=--.5 and at x=O. The variation is slightly unsymmetric about
O=n; it is this asymmetry that produces the Magnus force.

In Figure 13, (a)-(i) is shown the variation of * with x for

all the streamlines calculated. The calculations we:e begun with
p=-l at the stagnation point instead of p=-•. A few trials showed
that in the present example, a=4* and p=.25, when the initial
value of p was less than -5 or so, the integration of the differential
equations for 6*, 6, and ý could not be made because of divergent
oscillations. The behavior of ý near the stagnation point shown in
Figure 13 indicates that the effect of the choice of the initial
value of i soon disappears. Moreover, two calculations for =6',
p=l, n=-10, one with ps=-5 and the other with 4)s=-10 showed that
when x had increased to -. 985555 from the stagnation point value
-. 999796, the values of P for the two calculations differed by only
1 in the third significant figure. The difference then decreased
as x increased.

In Figure 14 is shown the normal force coefficient CN based on
the local cross section area for the portion of the body between

station x and the nose. The coefficient CN is obtained from

(Equation (137)) by the relation F-V

2

F 2 112
CN (152)

2L

In Figure 15 is shown the corresponding Magnus force coefficient Cy

obtained from (Equation (138)) by

2

F -2

Y (

S(153)
-000L2 7V 2)

2 L I
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Although the sign of Cy computed in the present method is positive
along the +Y axis in Figure 6 for w as shown in Figure 1, it is shown
negative in Figure 15 in order to adhere to the sign convention
given in Reference 16.

The curves for CN and Cy are shown dashed for x<-.6 because from
calculations for n=±95' and a calculation for q=+95° with 6s equal
to 5 times the correct value of 6s, it was found that the change in
6* for x<-.600 caused by using 56s instead of 6s in the calculation
for n=+95* was greater than 10 percent of the difference between 6*
for -n=9 50 and 6* for n=-950 . Thus the Magnus force for x<-.600 may
be affected by more than 10 percent by inaccuracies in the initial
values of 6 and ý and by the method of numerical integration; see
section on "Numerical Calculations".

The results in Figures (14) and (15) indicate that because of
the boundary layer, CN decreases and Cy increases as the fineness
ratio increases. The decrease in CN is almost linear with x for
larger x but Cy increases more rapidly than in a linear manner all
the way to x=0, the body base.

The value of the moment coefficient of the entire body defined
by (Reference 16),

1 - (154)n (273

is found to be 1.058x10-3. (See Equation (142))

COMPARISON WITH EXPERIMENT
There do not seem to be any experimental data for a spinning

half-ellipsoid of fineness ratio 5. Consequently, strictly speaking
there can be no comparison of the calculated results with experiment.
There are, however, some data for pointed shapes of near 5 fineness
ratio in subsonic flow. One set of data is that of Reference 16.
Tests were made of a model with a 2 cal. secant-ogive nose and a
3 cal. cylinder after-body. For a=4°, M=.2, and ReL=4.8x10 6,
the data in Figure 6 of Reference 16 indicate that Cy was about -. 0075.
This value is about 24 times as large as the calculated value
-3.11x10- 4 . The experimental value of CN was about .148 (Figure 11
of Reference 16); the calculated value is .1385. The calculated value
iF 93 percent of the experimental value. Slender-body theory,
without any boundary layer, p. 67 of Reference 6, gives the value
2a or .1396. This is almost eaual to the calculated value with
boundary layer.
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In Reference 17 the results of tests of a 4.9 caliber smooth
body are presented. The nose is an almost flat surface of about
.198 calibers; this is followed by a 16-degree half-angle cone for
about .775 calibers; this in turn is followed by a tangent ogive
for the next 2.5 calibers. The rear portion is a cylinder. The
Reynolds number based on body length was about 3.4xi0 6 ; at this
Reynolds number the shape of the nose portion almost certainly
ensures turbulent flow rearward from just behind the nose cap. For
this body at a Mach number of .8, the lowest tested, the value of
Cy was found to be about -. 0125. The change in body shape and Mach
number from the tests of Reference 16 to those of Reference 17
resulted in a change in Cy from -. 0075 to -. 0125. The value computed
for the half-ellipsoid is -3.11x10-4. Consequently it appears that
the calculated value of Cy for the half-ellipsoid is probably much
too small. The half-ellipsoid may have a more favorable pressure
distribution than the bodies tested and thus a thinner boundary
layer. If so, it would have a smaller Magnus force. It is not,
however, likely that this is the explanation of the large difference
between the measured and calculated values of Cy.

The calculated value of Cn, the Magnus yawing moment coefficient,
Equation (154), is 1.058x10 3 . The value of Cn calculated by use of
Figure 7 of Reference 16 is about -l.7x10- 3 . The experimental values
become zero at a=6° and positive for larger values of a. No values
are shown for a<41. The value of Cn tor the body of Reference 17
(Figure 42) is about 1.61x10- 2 .

DISCUSSION OF METHOD
The present method computes a displacement surface by the use

of boundary-layer theory. Consequently all the boundary layer
approximations are inherent in the method. In order for boundary-
layer theory to be applicable the boundary-layer thickness at a
point on the surface should be muchi smaller than the distance from
the point to the stagnation point. In the calculation for the half-
ellipsoid the largest 6 occurs at x=0, e=0. From Figure 11 it
appears that 6 is about 25 percent of ro at x=0, 0=0. Although 6 is
a large fraction of t o, it is less than 2.5 percent of the distance
to the stagnation point (see Figure 9). Therefore the boundary layer
is thin as required by boundary-layer theory.

When the boundary layer approximations are made, it can be shown

=p pv 2

aP
When v is of the same order as u (u=o(l)), ýy is of order unity
instead of 0(6) as is usual without spin (6<<l). Therefore the
static pressure difference across the boundary layer, which is

proportional to 2p can be of o(6) for a body with spin instead of
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o(62) as is usual without spin. Although the difference in static
pressure across the boimdary layer is of o(6) instead of o(62), it
is Laglected in the present analysis because terms of o(6) have been
neglected in deriving the boundary layer equation3 from the complete
equations of motion and because its inclusion wculd have made the
method more complicated. Eelley and Thacker in their analysis for a
cylinder with a laminar boundary layer find that the effect of the
pressure gradient across the boundary layer changes the Magnus force
by about 30 percent. Although this is appreciable, for the half-
ellipsoid an effect of this ampunt would not change the impression

that the calculated value of the Magnus force coefficient is much
too small.

In the present metnod, the velocity profile shape parameter n is
fixed before a calculation is made and does not vary along a stream-
line. If n were allowed to change by introducing an additional
equation for the change of n, the displacement thicknes 6* would
respond more accurately to pressure gradients along the streamlines.
The introduction of an equation for the change in n would, however,
further complicate an already complicated method and introduce
additional uncertainties associated with information needed for the
n equation.

The assumption that the u and v velocity profiles have the same
6 has been shown by Cooke (Reference 18) to be a source of inac-
curacy. The use of two 6's would introduce another dependent
variable and a partial differential equation for it. The feeling is
that instead of introducing an equation for n and an equation for
another 6 it might be better to investigate the use of a finite
difference method instead of the integral approach. Of course this
introduces other problems, one of which is the effect on the
turbulence of a spinning wall. Although this seems not to appear
in the present analysis, it is hidden in the friction formula and
velocity profile shape, both of which involve assumptions.

The use of slender-body theory, a theory for very thin bodies
at very small angle of attack, to calculate the Magnus force further
decreases the accuracy of the results. At first glance, it appears
that more accurate results can be obtained by using the method of
Reference / and 8. Although slender-body theory requires no infor-
mation for the wake, the method of Reference 7 and 8 cannot be used
unless the distribution of the displacement thickness behind the
blunt base is known. The method of Reference 7 and 8 cannot be used
to calculate the flow near the base of a body with a blunt base and
zero wake displacement thickness; infinite velocities are obtained
at the corner. Because the behavior of the wake is unknown and
because the Magnus force is small, the inaccuracy caused by an
inexact representation of the wake can be important. For a body
with spin and angle of attack the wake is not axisymmetric. It
seems that in order to get an accurate solution it may be necessary
to solve the entire flow problem, boundary layer plus wake.
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Another source of error is the lack of a reliable method for
calculating where on the body the initial laminar boundary layer
changes to a turbulent one. Consequently unless the transition
point is fixed or known in some way, the initial conditions for the
turbulent boundary layer and the location of its origin are also
unknown. Therefore even if the entire flow field could be solved
for exactly, the results might still be unreliable.

For tests of analytical methods for computing Magnus forces it
would be desirable to test a simple shape such as a half-ellipsoid
at a low Mach number. The advantage of a shape like a half-ellipsoid
is that the potential flow velocity distribution over at least the
forward portion is given by an analytic expression. This is ahelp in obtaining velocity derivatives and in finding the flow near
the stagnation point at angle of attack.
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FIG. 2 COORDINATE SYSTEM
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APPENDIX A

To obtain an expression for 2a at the stagnation point for a / 0,
the expression ax

v
tan a = (A-1)

ue

is used. By syrunetrv, the stagnation point lies on the curve e =
and v = 0 qn 0 = 7T for all x. Therefore, a = 0 for 0 wt for all x;
therefore, a =0 on 0 = 7 and therefore at the staqnation point.

3v
Also e = 0 for all x so that the term

ax

3v
1 eG (A-2)
ue 7roo

in (86) is zero for 0 = 7t.

To obtain an expression for ýa at the stagnation point, use (A-1)
to get

av au
u eUe-- ve --

_a, = e0(A-3)
-O 2 2u + v

e e

For x= x and 0 neat it,

3u a 2u e 2

U = (--) A0 + (- ) TA .,.
Ue s a.A 2

A-1
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v ;v : + 2 v eAO2
s 2

2 s;u ýu 32u
-- )= + eA + . .

S)

av av a2v
= - + ( AC + . .

s ao
s

Because ue is symmetric with respect to 0 = n it follows that
aue ' eue a2U e .
-•-) = 0 for 0 = r; therefore, (-) = 0. Also (- 3) 0 for

3 s 302 s
a 0. Moreo er, ve is antisymmetric with respect to 0 = t.

Tv eL 2 Ve ý 0
Therefor (- ) = 0 for 0 = w; thus (-) = 0. Also / 0s0 s s

for a E 0. Then (A-3) becomes

2 2a2u A2 Dve 3 v 32u
e e)AO0-•e)- ee,) - ( sO)A0A

3a a s s s 3:~2
2u e2 4 3v 2

2_ )+ (e) AO2

As

A-2
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or

1 e e-. (-n2) (•

ss

9a s S
(A-4)

2a u

2) -4a-8)

aa
362

s ea•
s
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APPENDIX B H

From Figure 8 the vector S to a point on the body is written, with

all lengths non-dimensionalized by the body length L, as

S = i(d+x) + Rr (B-1)

also

S e + hh (B-2)
0I

or, with (B-1) and (B-2)

i(d+x) + Rr = elf + hoh (F-3)

Then

A A A A

= i h(d+x) + Rhlr (B-4)

A

The unit vector h is given by

A A A

h e 2 cos 1- e 3 sin 8 (Figure 8) (B-5)

and the unit vector r is given by

r = j cos 0 - e 3 sin e (Figure 8) (B-6)

3-
B-1



Then from (B-4), (B-5), and (B-6)

ho= - (d+x) sin a cos f3 + R(cos a cos 8cos 6 + sin 8 sin E) (B-"''

The expression for 8 is given later on.

To find let the equation of the body plus the displacement
.8

surface be

H (x,R,O) = c (B-8)

Also

x = x(E,h,f3) (B-9)

R = R(Ch,8) (B-10)

6 = e(•,h,8) (B-Il)

Then

dx = xd&d + xhdh + x d8 (B-12)

dR = Rdýd + Rhdh + R da (B-13)

de = e dý + ehdh + 0ad8 (B-14)

Also

dH = HRdR + Hxdx + Hede = H d& + Hhdh + H d8 (B-15)

B-2



Then by using (B-12), (B-13), and (B-14) in the L.H.S. of (B-15)

and equating the coefficients of dý, dh, and d8 there is obtained

H = HR + Hxx + Ho6 (B-16)

H = HR + H x + H eh(B-17)
h R h :h+He h

H =HR + Hx +H (B-18)

., (r,ho,O) = c it follows that

@ho H :
(•--•-) =- Hq(B-19)H

f3 h

and

Th Hg
(•) _ -H(B-20)

H
h

When (B-16), (B-17), (B-18) are used in (B-19) and (B-20) the result

is

3ho) HRR + Hxx + He6

Rh xh e
(aE) HR H Hxh +• H~ (B21

and

!h° HRR + Hxx + H (B-22)
R R R h + Hxxh + H 6h

B-3



The quantities on the R.H.S of (B-21) and (B-22) are obtained

as follows. Equation (B-8) is written as

H(xR, e)= R-R(x,e) = c (B-23)

Then

H = 1 (B-24)RR

H a = (-x) (B-25)

H R (B-26)ae =e (x

From R = rO + 6* it follows that

ar
(2R) ( + (B-27)

ae 3xe ax

Also

d6* = 6", 3•6" dO
)6 + (* d (B-28)
- x

Therefore

( d6* - 6* d08x" • ---•)•-•(B-29)

d6*

The quantity a is computed during the integration of the equation
dx

for the displacement surface. The quantity ,•-- is found from the
x

B-4



computed values of 6* at various e for a fixed x by use of the
spline-fit method of Reference 20. The quantity L is the stream-dx
line direction. Equation (B-29) is used with (B-27) to get ax

For H, A there is used
x

ar 6so -56 + , (B-30)
x x

arwhere 0 =0 because r is independent of 0.
x

From (B-3) , (B-5) , and (B-6) it follows that

R =sin a cos 0 + h o(cOs a cos cos 0 + sin • sin e) (B-31)

Then

= sin a cos 0 (B-32)

Rh = cos a cos cos 6 + sin a sin 0 (B-33)
oR8 h h(-cos a sin ý cos e + cos a sin 0) (B-34)

Also from (B-3), (B-5) and (B-6) it follows that

x = • cos a -h sin a cos d (B-35)

Then

;I, cos a (B-36)

xh = -sin a cos B (B-37)

B-5



x= h sin a sin (B-38)

To find 80, 0h, and 88 multiply (B-3) by •i' The result is

= (d+x)cos a + R sin a cos 6 (B-39)
Y (B The result is

Now multiply (B-3) by e 3  .

R sin = h sine (B-40)
0

By solving (B-39) for cos 0 and (B-40) for sin 6 there is obtained

hosina
tan = sin a + h cos cos a (B-41)

0

Equation (B-3) is multiplied by e2" with the result

-(d+x)sin a + R cos a cos 0 = h cos 8 (B-42)
0

From (B-40) and (B-42)

R sin 6
tan 8 = (B-43)

-(d+x) sin a + R cos a cos e

From (B-41) there is found

-h sin 8sina
o insn (B-44)

(• sin a + h cos 13 cos a)2 + (h sin ) 2
0 0

B- 6



[sin a sin 8

(gsin + h cos 0 cosc + (h0 sine) (B-45)

h 0 (ý sin a cos B + h cos a)
(C.sina + h0 cos cos a)2 + (h0 sine) (B-46)

B-7



APPENDIX C

Unlike slender-body theory the method of Reference 7 and 8 does

not require the body to be slender or the angle of attack to be

small. In contrast to slender-body theory, however, the contour on

which the pressure is computed cannot have a blunt base because the

pressure on the body near the base is affected by the.shape of the wake

behind it. A blunt base results in infinite velocities at the base

corner and too high velocities in the entire region near the base.

Consequently, the body must be extended beyond the base in a more

or less realistic manner. As an approximation to the real flow the

body can be extended beyond the base by use of the equation

w .7rx 2os x
RW2k r-INI sin 2 R + cos x

7bi 2b b 2Nb

2 (dR*w\+ Z JdR-*W sin 72 Nx (C-1)

7T G - 0 _fNRb

where Rb = Rb(O) and the distance x in (C-l) is zero at the body base

and positive to the rear. The non-dimensional radius R* is thew

wake displacement radius very far behind the body. It depends on

the drag coefficient of the body; the relation is

R* (Appendix D)

rmw =f2[i+(K-i)M2 (C-2)
Cm

C-1



The arbitrariness in the choice of N and in equation (C-i)

itself make it inadvisable to introduce the additional complication

of R w 0 and (d--w) N 0. Consequently, instead of (C-i), there

can be used

Rw 2 7 xCos o (C- 3)
Rb 2 NRb

Calculations for tne body of reference 17 by a program of the

method of Reference 8, prepared by Hess and Clissold of Douglas

Aircraft showed that N=20 gave the most satisfactory velocity dis-

tribution over the rear portion of the body.

When the Mach number is not zero, the pressure coefficient Cp

on the body is calculated by using Gotherts Rule (page 397 of Ref-

erence 19) together with the method of Reference 8 as programmed for

an electronic computer in Reference 7. The velocity distribution

is calculated first for a body of thickness ratio tf at an

angle of attack of a I-M The velocities are then multiplied by

This velocity distribution is used to compute the boundary

layer displacement surface 6* which is added to r to get R. The

resultant radius R is then multiplied by 1-MC and the program of

Reference 7 used to compute C at 2- ; this Cp is then

1
multiplied by -- to get the C distribution used to compute the

1-M 2 p

Magnus force and moment.

The force in the Y direction is given by

C-2



F n^ e-. dA (C-4)
Y3

where fi is the outward unit normal to the body surface plus the

displacement surface and e3 is a unit vector along the Y axis

Figure 6. The unit vector fi is given by

VH
n I (C-5)

where the equation of the body is

H(x,R,O) R-R(x,O) = c (C-6)

1 A
Then in the i, r,5 system (Figure 8)

A A H 0

VH =iHx + HR r + (C-7)

or
R

VH =m+ r - 5(C-8)
x R

Then
R

-iR + r - 0
n (C-9)

R 2 1 + (-0)2
xR

therefore
Re

-sin 0 + _- cos 0

nee = R (C-10)
r~x + 1 4 (R-) 2

C-3

* a



Fit,

H/

When the static pressure P is written as

P, c- 2
SV c + P (C-1l )

and when it is noted that

CO n = 3 0 (C-12)

it follows that (C-4) becomes

0 2R) " 2 (C-13)
wVcoL2- (sinG R Cos )o + (- -cos 2)Fy =jCp• . .. . R -- d~dx

2-2 -d f R 2 + 1 + 2 Cos

where . 6* 2
1 + Wr-cos

dA =R Cos ddx (C-14)

has been used. The non-dimensional area dA is on the body plus the

displacement surface.

By using cos4ý =- R = sx and cos 0-*o near the nose of
x x

a blunt body it can be shown that at the stagnation point the
a6* 36*.

integrand becomes equal to -C PS. The value of

is zero because the 6* surface is assumed to be continuous; therefore

the integrand in (C-13) is zero at the nose of a blunt body.

C-4



The Magnus moment about the nose (x=-d) is given by

(C-15)

-0 27r R2
My I IC sin O- R--Cos 1 + 2

M- R • R -_(d+x)ddx

oo2 3 2R + 1 + ('6) 2R cos
-d 0

where M is positive as shown in Figure 1.

C-5



APPENDIX D

Far behind the body the flow is parallel to V,. The wake dis-

placement radius Rw* far downstream is defined by

2Tr d- 2T -id 
D1

2 f 2 1 7 d V( D l

w 0

In (D-l) y is measured from the wake center line and u is parallel

to V00.

Equation (D-l) can be written as

f P.,V~yd7 f ý,,,y-di = f yjd
0 0

or

CO

Then

CO

R* 2 (
2= (1-pu)Z.- • (D-3)

m rM r1
0

D- 1



VC2
T C T

p _ S 2 s -(D-8)

p s 2

where in (D-C) C is the specific heat at constant pressure.
p

Then with (D-7) , (D-8) becomes

-- = (D-9)
fV2

1 CT0 -V

p s - •2/2

Let

V2 V2

Co = 2___ _ ... = ( - )

C T _CpT
ps 2

Then

1_Cp (D-1O)
0 0

-f
Also with 1- pu = -00fC (1+Co)

0 0 0

and -fpu (l-u)= o

1- f C
0 0

D-3 i



Then (D-6) becomes

Sfo Y-d4
R 1 (1+C) foC rM r

R *2 MrM

=2 0

fl - fC rM r

0 0

or

or(

or with (D-5)

= [1 ( (K-1) M 2  (D-12)

D-4 A
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TABLE I
Expressions for the Gi(n)

n-i
G= (n+i) (n+2) (2n+1

G2 (n+1) (n+27

n2+ n-i
G3 (n+i) (Hn+2)

n+ 1
G4 n+2

3n + 4
G5  2 2(n +1) (n-+2) (2n-+-3)

-2 (n+1)2
G 6 (n+2) (2n+3)T

n

1
G 8= 2n+l

1
G9 = 2(n+l)

--n (2n+3)
G10= 2(n+i) (n+2)

Gil= (Fn+i) (2n+1) (2-n+-3)

n
G12 = (n+i) (2-n-+1)

1
G1 3 = 2(n+l) 2n-+1)

3n
G1=2 (n+ 1) 7(n-+T2) (n-+T

T I-1
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TABLE II
Integrals in Eq. (30) and (31)

:1u
of -Ud = Jl 2 +J2 + J3

(Ue-U)d =J4 + J5

VUeU)d = + J7O +J8

e = J 1 8  +19

(ve -v2)dt; J 9i 2 + Jl0 +ll

l(v e-v)dC = 9i + J1i + 1

IV' 9 ,2 ý + +1

l(ve-v)dc = J6O2 + J 140 + J15

e(UV-UV)d = + J16ý + J17

T II-1
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TABLE III

Expressions for the Jj

.2
A1 =AG 1 sin a

J2= A[-(AG 1-BG 2cos a sin a -2CG 5sin a]

AA8+B) 7cosa 3 C(A 3 B 4)cos a sin a + c2G6sin a

J4= AG2sin a

J5 AG7cos a + CG4sin a

J6 -A G cos asin a

* 2 2
7= A[(AG13+BG2)sin a + AG14cos a +2CG 5cos a sin a]

J8= [A(AG12+BG.7)-C2G6 ]cos a sin a +- C(AG 9+BG4)sin 2a -ACG 1 0 cos2a

J A2G 1cos2 a 
1

J0= AJAG 1- qe+B)G2 ]cos a sin a - 2ACG 5cos 2a

J1=A(AG12+(qe+B3)G 7 1sin~a +C(AG 3 -(qe+B)G4]cos a siln a + C2G c,)s 2a

J2=-A[(2AG13+2G 2B-qeG 2)cos asin a + 2 CG5cos a]

1 3= [qe( 2AG9+B) - (A2G 8+4G9AB+B 2) ]sin 2a

2 2

1 4= A[-(AG 13 +BG 2)Cos 2a + (AG13+BG2-qG 2)sin a + 2CG5cos a sin a)

J5= [qe( 2AG 9+B) - (A2G 8+4ABG9+B2 )-C
2G 6 cos a sin a

22 .

16= Af-(AG13+BG2 ) (Cos a-sin a) + 2CG5sin a cos a

J17 = [qe 2 (A2G8+4ABG 9+B2)-C2G6]cos a sin a -C(AGg+BG 4) (cos2a-sin
2a)

18= -AG 2COS a

Jg= AG 7sin a -CG 4cos a

T III-1
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TABLE IV
Program for Computation of Magnus Force and Moment

For Half-Ellipsoid

Column I are symbols that occur in program
Column II are symbols in symbol list (page vi) that corresj r'; '1

symbols in Column 1

I II

A A

AK k

AJN Ji

Alpha a

B B

C C

COS A Cos

COSMA Cos a

COSPH cos

COST cos "

DELTA 6

DELTAI 6s

DELTAZ 6s for a 0, w = 0

DELTX Ax

DDDX d5
dx

DDS TAR

DDSTDX d 6 */dx

DRDS dr0

SDSTARI 6*

DTHDX do
dx

T IV-I -
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